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DDouble-blind, placebo-controlled, 
randomized clinical trials (RCTs) are the gold 
standard for the evaluation of experimental 
therapeutics, but comparisons of e�  cacy 
and safety to those of placebo treatment 
pose unique and speci� c challenges. The 
placebo response, the phenomenon by 
which clinical trial patients experience a 
clinical improvement after treatment with a 
placebo, has historically made demonstration 
of e�  cacy di�  cult, leading to increased 
data variability, clinical trial failures, and 
potential abandonment of compounds that 
may otherwise be e�  cacious. For example, 
meta-analyses of depression studies have 
shown that high placebo response, not low 
medication response, is responsible for most 
of the change in drug-placebo di� erences over 
time.1,2 High placebo-response rates are seen 
across therapeutic areas but are particularly 

high in neurological and psychiatric diseases, 
and substantial attention has been given 
to placebo response in areas such as pain, 
depression, schizophrenia, and Parkinson’s 
disease. This is confounded by the use of 
primarily subjective, patient-reported 
outcomes as primary endpoints for these 
indications.

Sponsors of clinical trials have employed 
a variety of methods to control or otherwise 
limit the impact of the placebo response, 
focused on identifying high placebo 
responders and excluding them from the trial; 
minimizing in� ation of patient expectation, 
either by clinical trial design factors or site/
sta�  training; or reducing variation or errors 
in either patient or physician/rater reporting 
of outcomes. While these strategies have 
yielded some bene� t to trials, the problem 
persists, with some reports suggesting that 
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A B S T R A C T

The placebo response is a highly complex 
psychosocial-biological phenomenon that has 
challenged drug development for decades, 
particularly in neurological and psychiatric 
disease. While decades of research have aimed to 
understand clinical trial factors that contribute 
to the placebo response, a comprehensive 
solution to manage the placebo response in drug 
development has yet to emerge. Advanced data 
analytic techniques, such as arti� cial intelligence 
(AI), might be needed to take the next leap 
forward in mitigating the negative consequences 
of high placebo-response rates. The objective of 
this review was to explore the use of techniques 
such as AI and the sub-discipline of machine 
learning (ML) to address placebo response in 
practical ways that can positively impact drug 
development. This examination focused on 
the critical factors that should be considered 
in applying AI and ML to the placebo response 
issue, examples of how these techniques can 
be used, and the regulatory considerations for 
integrating these approaches into clinical trials.  

KEYWORDS: placebo response, placebo e� ect, 
clinical trials, arti� cial intelligence, machine 
learning, machine intelligence
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the placebo response is increasing over time 
in areas such as pain3 and psychiatry.4–7

Clearly, there is still a substantial need for new 
approaches to address the placebo response in 
drug development, and it is critical for future 
approaches to be scalable for large, industrial 
clinical trials and acceptable to regulatory 
agencies.

These e� orts to understand and reduce 
the impact of the placebo response in drug 

development have been complicated by the 
complexity of the placebo response itself. The 
wealth of basic scienti� c research performed 
in this area has illuminated the wide variety 
of factors that contribute to the placebo 
response, ranging from biological factors (e.g. 
activation of speci� c circuitry in the brain) 
to social cues (e.g. transfer of expectation 
from investigators to patients) and beyond. 
The placebo response is dynamic, changes 

over time, varies in di� erent cultures and 
geographies, and can be in� uenced by the 
clinical trial itself. Further adding to this 
complexity, while the placebo response 
is primarily measured in placebo-treated 
patients, it also constitutes some component 
of the treatment e� ect in drug-treated 
patients. This contribution has been estimated 
to comprise about 65 percent of the measured 
treatment e� ect in pain8 and depression9 trials.

FIGURE 1. The placebo response observed in clinical trials is a composition of “true” e� ects, which cause measurable changes in human physiology, and “perceived” e� ects. Adapted 
from Howick J et al.67

TABLE 1. De� nitions used in this manuscript
WORD DEFINITION

Placebo
In clinical trials, placebos are generally control treatments that appear similar or identical to the experimental treatments but lack their essential (active) 
components.65 For the sake of this article, it can be assumed that placebo treatments are administered in a blinded fashion.

Placebo response
Improvement observed after a placebo treatment in a clinical study. Includes all potential sources of change from a baseline once a placebo treatment is 
introduced in a clinical trial. These responses may include spontaneous remission, regression of the medical condition to the mean, Hawthorne e� ects, placebo 
e� ects, and other factors.66

Placebo e� ect
Improvement observed after a placebo treatment, which is attributed to the placebo mechanisms exclusively, e.g., psychological and physiological bene� ts of 
receiving treatment independent of the essential (active) components. The placebo e� ect is the di� erence between a placebo-treated group/condition and a 
nontreated group/condition, as this is the basis for deriving mechanisms.66

Treatment e� ect
Improvement attributed to the active components of the experimental treatment. The treatment e� ect is calculated as the di� erence between a placebo 
treated group/condition and a group treated with the experimental active components.

Nocebo response
Worsening observed in subjects receiving placebo inert treatment. Includes all potential sources of worsening from a baseline, e.g. the natural history of the 
medical condition in question, spontaneous worsening of the symptoms and random comorbidities, and other components that are attributed to the nocebo 
e� ect.66

Nocebo e� ect 
Adverse e� ect following a placebo inert treatment that are exclusively attributed to the nocebo mechanisms, e.g. expectation, conditioning, or observational 
learning.66

Arti� cial intelligence 
(AI)  

The theory and development of computer systems that perform tasks that typically require human intelligence, such as visual perception, speech recognition, 
decision-making, and translation between languages. This broad term covers applications such as robotics, facial recognition, and digital assistants, which can 
perform simple command tasks. Within this general category lies the more speci� c � eld of machine learning (ML).

Machine learning (ML)
A sub-discipline of AI in which algorithms are used to learn patterns in data. Once these patterns are learned, they can be applied to predict or illustrate 
characteristics of the data not visible to the naked eye.
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Considering the complexity and dynamic 
nature of the placebo response, the advent 
of advanced and sophisticated data analytic 
approaches could be helpful, or even required, 
to shed new light on this old problem. Advances 
in arti� cial intelligence (AI), speci� cally 
machine learning (ML)-based approaches, 
have made these techniques more accessible 
and acceptable, and their adoption by the 
biopharmaceutical industry is apparent in 
areas such as target validation, computational 
chemistry, and drug repurposing. The utilization 
of methods such as ensemble trees (e.g., 
boosted trees and random forest), support 
vector machines, and deep neural networks 
are among the most popular methods being 
used. While there are many speci� c methods 
available, the essential character of ML 
algorithms is that, in some sense, they program 
themselves. This means that the algorithms 
learn about some set of data and are not 
manually programmed to do a task, but instead, 
models emerge from their interaction with data. 
Here, we explore the role and potential of AI in 
understanding and even predicting the placebo 
response.  

With this in mind, the goals of this review are 
as follows:

• Inform scientists and physicians 
conducting clinical trials about AI.

• Explore how AI could be used to 
address placebo response in innovative, 
productive, and practical ways.

• Examine how AI has been or is currently 
being used to understand or address 

the challenges of the placebo response 
in neuroscience.

• List the key regulatory questions that 
emerge for the AI approaches that 
could be, have been, and are being 
used to address the placebo response 
challenge in regulated trials.

It is important to lay out our consensus 
definitions for the terms used throughout 
this manuscript. Terms are defined in Table 
1, with Figure 1 illustrating the differences 
between placebo response, real and perceived 
placebo effect, and treatment effect. It is 
noteworthy that, for the sake of this review, 
the term “placebo response” will be used to 
indicate the full range of responses that a 
patient receiving a placebo might exhibit, 
from negative (nocebo) response to no 
response to positive (placebo) response. This is 
important, as AI-based analytical or predictive 
approaches should aim to model this entire 
spectrum of response. Also, the term “AI” will 
be used to refer to the entire scope of machine 
intelligence/artificial intelligence, including 
ML. In areas where ML is specified, it is 
referring to only the sub-discipline of ML and 
not the full field of AI.

FACTORS CONTRIBUTING TO THE 
PLACEBO RESPONSE

A wide range of factors can contribute to 
the apparent benefit in a specific endpoint 
assessed in trial participants who receive 
an inactive treatment (Figure 2). These can 

be broadly categorized into treatment-
related, natural history, and measurement 
factors.10 Treatment-related, or real, factors, 
including intrinsic psychological experiences 
of participants and extrinsic psychosocial 
features of the trial environment, are 
fundamental contributors.11,12 Chief among the 
intrinsic factors are participant expectancies, 
such as how much they believe they will 
benefit as a consequence of a treatment.13

Intrinsic factors also include the relevant 
learning histories of participants, such as 
prior treatment successes or failures, and even 
conditioned associations between symptom 
improvements and salient treatment-related 
cues, such as pills and medical procedures. 
These intrinsic psychological processes 
interact with various extrinsic trial features to 
impact the magnitude of placebo response. 
For example, placebo response could be larger 
in trials in later stages of development or 
with more frequent and/or longer study visits. 
Furthermore, frequent contact and attention 
provided by empathetic professionals at trial 
sites can foster an interpersonal environment 
that promotes nonspecific treatment benefits. 
The magnitude of placebo response also 
relates to information provided to participants 
on trial design, such as the number of 
treatment arms (i.e., probability of receiving 
placebo), and even to physical characteristics 
of the treatment itself (e.g., mode of 
administration, the color or size of pills).14

The invasiveness and cost of treatment create 
higher expectations for efficacy and thus 
higher placebo response. Notably, the impact 
of all these treatment-related factors varies 
among individuals and is likely moderated 
by certain participant characteristics.15,16

Individual differences in variables, ranging 
across demographics, disease characteristics, 
personality traits, genetics, and culture, have 
been investigated in this context.

Several other factors beyond these 
treatment-related factors can also contribute 
to the measured placebo response over the 
length of a clinical trial, including natural 
history factors, which refer to the progression 
of the disease over time in the absence 
of treatment. For example, participants 
often enter trials when their symptoms are 
relatively severe and might then experience 
decreases or spontaneous fluctuations in 
symptoms over time that simply reflect 

FIGURE 2. Sources of placebo response in central nervous system (CNS) trials
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the natural course of illness. Furthermore, 
central nervous system (CNS) trial endpoints 
often rely on subjective ratings, which are 
prone to various sources of error related 
to measurement factors. One key source is 
the statistical phenomenon of regression 
to the mean, or the tendency for individual 
outcomes with more extreme initial scores to 
shift toward the group mean over repeated 
measurements. Biases in how raters and 
participants approach the assessment also 
impact measurement. For example, raters 
can be biased by their own beliefs about an 
experimental treatment or by other issues, 
such as financial incentives to enroll patients, 
which can lead to inflated baseline symptom 
ratings. Alternatively, well-known response 
biases, such as providing responses that are 
socially desirable or aligned with beliefs about 
what the expert investigators hope to find, 
can influence how participants report their 
symptoms.  

Our current understanding of the placebo 
response comes largely from isolated 
clinical studies, in which one or a small 
number of factors are parametrically altered 
to understand their influence on patient 
response to a placebo, or from meta-analyses 
of multiple clinical studies in a specific 
indication. While the field has gained valuable 
insight with these approaches, it is difficult-
to-impossible to obtain either qualitative or 
quantitative understanding of the complex 
interplay between the multiple factors 
that can define or influence the placebo 
response. We simply do not yet understand 
how to weigh these factors, how they are 
interrelated, and what additional factors 
might impact these relationships. The advent 
of advanced data analytic techniques, such 
as AI, along with the predictive modeling 
approaches made possible by ML, might 
not only be useful but necessary to begin to 
understand a phenomenon as complex as the 
placebo response.

HOW AI/ML CAN BE USED TO 
UNDERSTAND OR ADDRESS THE 
PLACEBO RESPONSE IN DRUG 
DEVELOPMENT

The use of AI (including the subdiscipline 
of ML) can provide several advantages in 
addressing placebo response, including the 
ability to analyze large volumes of data. 

There are different types of AI that can be 
useful, ranging from support vector machines 
(SVM) to artificial neural networks, each with 
different advantages and limitations. For 
example, some AI-driven approaches require 
data from thousands to tens of thousands of 
patients to draw meaningful conclusions; such 
applications might be limited to large-scale 
meta-analyses of multiple clinical trials. 
Selection of specific AI approaches should 
ideally be matched to the scientific or research 
question being pursued.

While AI-based approaches are well-
positioned to provide insight and at least 
partial solutions to address the issue of the 
placebo response in drug development, 
the limitations and risks associated with 
these approaches need to be kept in mind. 
The choice of specific AI/ML methods can 
lead to biases in outcome. For example, 
methods should be matched to the size and 
characteristics of the dataset to avoid the risk 
of overfitting—or producing a model that is 
too closely aligned to a specific dataset and 
loses applicability to other sets of data. As AI-
based algorithms might make unsupervised 
associations, data should be interpreted by 
experts in clinical trial design and execution 
to ensure that relevant conclusions are 
drawn. Beyond this, all algorithms should 
be evaluated and conclusions confirmed on 
independent datasets from the data used for 
the initial analysis. 

One potential application of AI to better 
understand the placebo response and 
instruct the field on how to optimize clinical 
trial design would be to identify key trial 
design factors associated with high placebo 
response. This type of approach could be 
applied retrospectively to large or complex 
datasets and would be useful in identifying 
associations that were too subtle or not readily 
apparent by other methods (e.g., classical 
statistics). Retrospective meta-analyses could 
be used to compare trial design features and 
understand their specific impact on assay 
sensitivity. For example, it is well-recognized 
that specific clinical trial design factors, such 
as the number of treatment arms or trial 
duration, can increase patient expectancy 
and thus increase placebo response. AI-based 
methods could not only identify additional 
factors that might not be obvious, but could 
also begin to quantify the relative importance 

of each factor across trials or between disease 
areas and their complex dependencies.

Beyond identifying meaningful associations 
between clinical trial design factors and 
placebo response, predictive algorithms based 
on AI that could identify placebo responders 
at baseline are appealing possibilities. In 
developing such algorithms using AI, there are 
a few critical components. First, it is important 
to select the most pertinent baseline features 
(perhaps using techniques like SVM recursive 
feature elimination [SVM-RFE] or data-driven 
methodologies), noting that some of these 
features might be disease speci� c. Particular 
attention should be paid to limiting the risk 
of over� tting. To minimize this risk, modeling 
approaches that are appropriate for the 
dataset’s characteristics, including sample 
size, number of features, nonlinearities, 
and noise distribution, should be selected. 
Performance of the predictive model should 
then be appropriately evaluated to con� rm 
modeling choices, with care taken to avoid 
any bias in the analysis. Common methods 
to estimate performance on an initial model 
are cross-validation or repeated random 
subsampling, in which a portion of the dataset 
(e.g., 90%) is used to train the model, which 
is then evaluated on the remaining dataset 
(e.g., 10%). This process is iterated dozens or 
hundreds of times to con� rm the performance 
of the model. To further con� rm the validity 
of the model, it could be � xed a priori and 
evaluated on an independent set of patients 
other than those used to train the model. 

If techniques like AI can eventually be used 
to predict placebo responders before the � rst 
administration of a drug, the next obvious 
question is, how should that information be 
used for population enrichment or targeted 
recruitment? While there are several options, 
one approach would be to exclude high 
placebo responders to improve clinical trial 
assay sensitivity or the degree to which the 
trial can distinguish the response to treatment 
from the response to placebo. The best way to 
estimate the potential impact of this approach 
is to evaluate the e� ect of placebo run-in 
periods. Placebo run-in trial designs, ranging 
in complexity from single-blind placebo 
run-in to sequential parallel comparison 
design (SPCD),17 intend to identify and exclude 
patients that show a strong improvement 
with placebo. However, meta-analyses of pain 
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and psychiatry RCTs have demonstrated that 
placebo lead-in phases neither decreased the 
placebo response18 nor increased the di� erence 
in responses between active drug and 
placebo groups.19–21 Beyond this, high placebo 
responders also often have a robust response 
to drugs, so excluding high placebo responders 
could actually result in an enriched population 
of nocebo responders. Considering that, when 
used as a patient selection factor, placebo 
run-in designs result in disquali� cation of 7 to 
25 percent of patients,18,19 this approach could 
extend trial recruiting time and cost for little 
or no gain.

Excluding placebo responders e� ectively 
results in limiting the population in which 
drug e�  cacy and safety are evaluated. Thus, 
extrapolation to a broader population later 
can lead to regulatory concerns. In fact, use 
of an SPCD was cited as a potential reason for 
rejection of a recent application of a drug to 
treat depression.22 It is possible, however, that 
using AI or ML to identify placebo responders 
might be more e� ective or more e�  cient 
than placebo run-in designs, and thus have a 
more positive impact. Despite these potential 
drawbacks, there might be situations in 
which excluding placebo responders could be 
appropriate (e.g., in early phase studies or as 
part of fail-fast development strategies).

In exploring how AI can be used to address 
placebo response in drug development, ethical 
considerations based on the understanding 
that placebo response describes clinical 
improvement in trial participants must be 
kept in mind. For example, if speci� c clinical 
study design characteristics cause clinical 
improvement in clinical trial subjects, is it 
ethical to modify study design and limit 
the bene� t to subjects? If a study proposes 
to remove high placebo responders, is it 
ethical to restrict access of these patients to 
experimental therapies? These questions must 
be balanced against the acknowledgment that 
the placebo response problem can contribute 
to high failure rates of clinical trials and drug 
development programs, and thus negatively 
impact the availability of new medicines to 
entire patient populations.

AI-based predictions of placebo responders 
can potentially be used in other ways that 
could positively impact clinical trials. One 
option would be stratifying patients based 
on their placebo responsiveness. This would 

address the critical risk of unbalanced 
distribution of strong placebo responders 
within the respective treatment arms, 
especially in clinical trials with small sample 
sizes. A second option would be the use of 
predicted placebo responsiveness as a baseline 
covariate in the statistical analysis. In this 
way, some of the variation of the outcomes 
between patients can be explained by this 
covariate, thus leading to an increase in study 
power and a reduced risk of clinical trial 
failure.

PUBLISHED EXAMPLES USING AI TO 
UNDERSTAND OR PREDICT PLACEBO 
RESPONSE

A handful of initial published studies have 
applied AI-based approaches to CNS clinical 
trial data to understand determinants of 
placebo response. Three particularly relevant 
studies come from secondary analyses of 
antidepressant trials in patients with major 
depressive disorder (MDD) from three di� erent 
age groups. All three attempted to identify 
baseline characteristics that predict placebo 
response, though the methods and analytic 
approaches di� ered considerably.  

Using data from an RCT of citalopram 
versus placebo in 174 older adults with MDD, 
Zilcha-Mano et al23 applied a random forest 
ML approach to 11 baseline demographic, 
clinical, and cognitive variables to identify the 
strongest overall moderators of response on 
clinical ratings of depression. The predictor 
pro� le di� ered between conditions: the 
strongest response (i.e., symptom decrease) in 
the placebo arm was for patients with higher 
education (>12 years of school), whereas the 
strongest response in the drug arm was for 
patients with lower education (<12 years of 
school) with a longer duration of illness.  

Using an alternative strategy with data 
from 141 adults with MDD in the placebo arm 
of the EMBARC trial, Trivedi et al24 applied an 
elastic net regularization approach to 283 
baseline clinical, behavioral, imaging, and 
electrophysiological variables to identify the 
most robust parsimonious set of predictors 
of clinician-rated outcome. Lower baseline 
depression severity, younger age, absence of 
melancholic features or history of physical 
abuse, less anxious arousal, less anhedonia, 
less neuroticism, and higher average theta 
current density in the rostral anterior cingulate 

were retained as the best predictors of placebo 
response. Focusing on these variables, a 
Bayesian method was used to develop an 
interactive calculator to predict the likelihood 
of placebo response at the individual subject 
level, which demonstrated a relatively high 
degree of predictive accuracy within this 
sample.  

Lorenzo-Luaces et al25 applied a similar 
elastic net regularization approach to 18 
baseline demographic, clinical, and cognitive 
variables in the placebo arm (n=112) of an 
RCT in adolescent MDD. Baseline depression 
severity, age, action stage of change, sleep 
problems, expectations, and maternal 
depression were retained as key predictors 
of post-treatment self-reported depression. 
These variables were used to develop a 
subject-level prognostic index, re� ecting 
vulnerability to placebo response.

A few other studies have started to use 
ML approaches to examine issues related to 
placebo response. For example, ML methods 
have been used to examine predictors of self-
reported treatment expectancies and sudden 
treatment gains during RCTs for depression.26,27

Using functional magnetic resonance imaging 
(fMRI) data, exploratory studies (number 
of subjects≤50) have found links between 
certain resting state functional connectivity 
characteristics and placebo response in studies 
of depression28 and acupuncture for pain.29

In summary, while the application of ML 
methods to understand placebo response is in 
its infancy, promising � ndings, primarily in the 
area of depression, are starting to emerge.

EMERGING RESEARCH USING AI TO 
UNDERSTAND OR PREDICT PLACEBO 
RESPONSE

As experts in the � eld, several working 
group members contributed examples from 
their own research that, considering the 
relative newness of this � eld, have yet to be 
published in their entireties. These emerging 
examples are included to share some insight 
into what might be developing in this area 
over the next several years. The inclusion of 
these examples does not indicate preference, 
only the availability of data for consideration 
by this team.

Development of a placebo-quanti� ed 
response score in schizophrenia. E� orts 
to overcome the adverse impact of high 
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placebo response rates have led to multistage 
trial designs in which placebo responders 
are identi� ed after placebo administration. 
This study hypothesized that 1) a patient’s 
expected placebo response (placebo quanti� ed 
response score [PQRS]) could be determined 
at baseline using models trained on placebo-
treated patients within other studies; 2) the 
PQRS would predict medication response in 
new studies; and 3) trial enrichment based on 
PQRS would enable sponsors to increase e� ect 
size or reduce the study sample size necessary 
to achieve a speci� c e� ect.

Using only baseline information (age, 
diagnosis age, sex, country, baseline PANSS 
scores), random forests ML models were 
trained and tested across 11 studies (N=3,647) 
in schizophrenia to predict the placebo 
response (i.e., to create a PQRS) using placebo-
treated patients.30 The medication response 
was also predicted across studies using 
baseline information and the PQRS to test 
whether placebo risk in� uenced medication 
response. Several di� erent trial enrichment 
designs were evaluated using placebo 
responder exclusion or medication responder 
inclusion predictions. Omega-squared, 
eta-squared, and partial eta-squared e� ect 
size measures were compared for di� erent 
screening strategies.  

The PQRS predicted the actual placebo 
response and the medication response 
(p<0.05) above and beyond baseline 
information. The average correlation between 

the PQRS and the actual placebo response 
across all nine placebo-controlled studies 
was r=0.24, corresponding to an R2 of 5.9 
percent (p<0.001). In the parametric models, 
a greater PQRS was associated with a larger 
treatment response within the medication 
group. The correlation between the PQRS 
and the total treatment response was 
r=0.22, corresponding to an R2 of 4.8 percent 
(p<0.05.)30 PQRS prediction was, however, 
poor in comparator studies or when study 
populations had dissimilar demographics. 

Associating placebo response with 
attitudinal variables in bipolar disorder. 
An application of a machine intelligence 
method combined with data from a 
clinical trial (NCT01467700) evaluating an 
investigational drug for the treatment of 
acute depressive episode in bipolar 1 disorder 
demonstrates the potential for AI to assess 
the impact of placebo response within 
clinical trials. The analysis focused on 378 
patients that completed the study. The study 
drug did not show separation from placebo, 
and the team used ML for the prediction 
of placebo response and nonresponse. The 
variables utilized in these models were 
derived from a collection of clinical scales at 
baseline, including the Montgomery–Asberg 
Depression Rating Scale (MADRS), Hamilton 
Anxiety Rating (HAM-A), Young Mania Rating 
Scale (YMRS), and the Clinical Trial and Site 
Scale Modi� ed (CTSS-M), a patient-reported 
assessment designed to assess the probability 

of placebo response, which were administered 
in this clinical trial.31

The machine intelligence method deployed 
was a novel blend of ensemble trees and 
unsupervised learning to identify responders, 
determined as patients who had 50-percent 
improvement in MADRS from baseline. 
Once clusters were de� ned, ensemble trees 
were used to learn from these partitions 
and to focus on subpopulations where they 
could make the strongest predictions.32 The 
training data consisted of one cohort of 64 
participants receiving placebo out of 71 who 
had CTSS-M data at baseline (total placebo 
participants in the study, N=115).33 Models 
were tested on 218 out of 239 participants 

FIGURE 3A. A prespeci� ed chronic pain model was used to predict placebo response after being prespeci� ed in the data analysis of a Phase II double-blind, randomized controlled 
clinical trial in osteoarthritis pain. The placebo response (i.e., reduction in pain [mean and 95% con� dence interval]) of patients predicted to be strong placebo responders was 
signi� cantly greater than the placebo response of patients predicted to be placebo nonresponders.

FIGURE 3B. Using the placebo response covariate in an 
adjusted analysis improved the precision of treatment 
e� ect estimation by a net gain of 37.2%.
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who had baseline CTSS-M and were given the 
active study drug, as there was no signi� cant 
separation from placebo. It is noteworthy that 
the models employed for this work are designed 
to look for coherent causal subpopulations 
within complex patient populations, meaning 
that they made predictions for a few patients. 
Thus, if the model claimed that a person was a 
nonresponder, it was correct 87 percent of the 
time. There were 44 participants for whom it 
made a nonresponder call. The model being 
reported here was trained to either make a “No 
Call” or to identify nonresponders. Speci� cally, it 
made a false nonresponder call on � ve out of 54 
responders and made a true nonresponder call 
on 39 out of 164 patients. Thus, when the model 
did make a call, it was correct approximately 87 
percent of the time, but it only made calls on 
approximately one-� fth of the patients.33

While the results of this study are promising, 
they do have some limitations. First, the study 
considered only participants with bipolar 1 
disorder who were having an acute depressive 
episode, and analysis was limited to patients 
completing CTSS-M (English speaking United 
States [US] participants only). Importantly, 
the models built by this approach do not make 
predictions for everyone, just for individuals 
about which the models are con� dent. As 
both training and testing of the model were 
conducted in the same study, these � ndings 
require replication in an independent study 
before de� nitive conclusions can be drawn. 

Prediction of patient placebo 
responsiveness based on patient 

psychological traits. The contribution of 
patient psychology to placebo response has 
been well-documented in the literature34–42

and might be necessary to robustly predict 
placebo response. One AI method considers 
psychological features of the individual patient, 
along with demographics, disease intensity, 
and other standard baseline data, and utilizes 
an ML-based predictive algorithm to predict 
the placebo response of an individual at 
baseline. The predictive algorithm used in this 
approach included ridge regression and linear 
support vector regression, which are both 
linear methods. In general, the initial weights 
and features included in each disease-speci� c 
model are � rst trained on data from placebo-
treated patients, and model performance is 
estimated using repeated random sub-sampling 
techniques (e.g., Monte Carlo Cross-Validation) 
and/or evaluated in an independent clinical trial 
to con� rm and validate predictive performance. 
The predictive model can then be prespeci� ed 
and used to calculate a score in the clinical study 
that describes the placebo responsiveness of the 
patients. This score can be considered a baseline 
covariate following the regulatory guidances43,44

that, when included in the statistical analysis 
(ANCOVA), might reduce data variance and 
increase study power. 

Predictive models have been developed 
in chronic pain, using data from 87 patients 
with peripheral neuropathic pain (PNP) or a 
mixed population of 135 patients with PNP 
or osteoarthritis (OA) pain. These two models 
exhibited similar performances. Furthermore, 

the model trained on patients with PNP was 
only used to predict placebo response in the 
mixed population of patients with PNP or OA, 
suggesting that factors predictive of placebo 
response in patients with PNP and OA are 
consistent.45

The chronic pain model was trained on data 
from 211 patients with PNP or OA from several 
pooled clinical studies. This model was fully 
prespeci� ed in the statistical analysis plan in a 
recent Phase II, randomized, placebo-controlled, 
multicenter trial in OA pain (NCT04129944). 
In this study, the model predicted placebo 
response for multiple endpoints, with a 
Pearson’s correlation ranging from 55.2 to 59.7 
percent for the three components of the Western 
Ontario and McMaster Universities Arthritis 
Index (WOMAC) battery (R2: 30.4–35.6%, 
p<0.001).46 The model was further predictive 
for all patients in the trial (R2: 15.9–30.7%, 
p<0.001). The placebo response of patients 
predicted to be high placebo responders 
(placebo response score higher than the mean) 
was substantially higher than the placebo 
response of patients predicted to be placebo 
nonresponders (placebo response score lower 
than the mean) (Figure 3A). Using this placebo 
response score as a covariate resulted in a 
decrease in data variability that translated into 
a 37.2-percent improvement in the precision of 
the treatment e� ect estimation, demonstrating 
the tool’s e� ectiveness in increasing clinical trial 
assay sensitivity (Figure 3B).46

A similar approach was taken to build 
a predictive model of placebo response in 
Parkinson’s disease in a cohort of 94 patients. 
This approach predicted placebo response 
for multiple endpoints, including Uni� ed 
Parkinson’s Disease Rating Scale III (UPDRS 
III) (Pearson’s correlation=66.0%, R2=43.6%, 
population R2=33.2%, p<0.001).47 Importantly, 
this covariate approach explains 2- to 3-fold 
more variability in placebo response than 
standard factors, including baseline disease 
intensity, age, and sex (Figure 4) across multiple 
trials in PNP and OA pain, demonstrating the 
critical importance of including personality 
traits in predictive modeling of placebo 
response. 

REGULATORY CONSIDERATIONS 
With the increasing use of AI and ML 

in clinical drug development, regulatory 
agencies are engaged in re� ection papers 

FIGURE 4. The chronic pain model based on psychological characteristics  consistently explains more variability than 
standard baseline composite covariates consisting of baseline disease intensity, age, and sex. Data is presented from four 
independent clinical trials, two in peripheral neuropathic pain (PNP) and two in osteoarthritis pain (OA).
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and discussions with stakeholders, including 
the pharmaceutical industry, academia, 
scienti� c consortia, and patient advocacy 
groups.48–55 Recently, regulatory agencies have 
issued proposed frameworks for using AI/ML 
algorithms in clinical trials56 and requested 
stakeholder feedback.57,58 These interactions 
highlight the importance of better de� ning 
the framework and further characterizing the 
issues surrounding the development and use 
of AI/ML algorithms. 

While regulators are aware of some of the 
advantages these AI technologies might o� er 
in optimizing drug development, it is essential 
that they establish policies and develop 
guidance on this topic. For example, the FDA’s 
Center for Devices and Radiological Health and 
the European Union (EU) have respectively 
published their action plans for the use of 
AI/ML-based software as a medical device57

and a fact sheet on Medical Device Software 
(MDSW),59 as well as the 2021 Coordinated 
Plan on AI, which is the next step in creating 
EU-based global leadership in trustworthy AI.60

In the US, the FDA’s Center for Drug 
Evaluation Research Critical Path Innovation 
Meetings61 remains a forum for stakeholders 
to share their approaches and seek guidance 
on the best path forward with technologies 
enhancing clinical drug development. When 
these AI methods are intended to be applied to 
speci� c drug development programs, sponsors 
are recommended to seek the opinion of the 
relevant FDA review division at an early stage 
of planning under their investigational new 
drug (IND) application. This is particularly 
important, for instance, if a sponsor intends 
to use AI/ML in the enrichment of the 
proposed study population (e.g., selection of 
placebo nonresponders in a CNS indication). 
Discussions should include the appropriateness 
of the proposed patient selection criteria, 
any detection of drug e� ect di� erence in that 
selected/enriched population (as compared 
to that in the unselected population), and 
how to re� ect such trial results in product 
labeling.62 In Europe, the European Medicines 
Agency (EMA) has several venues in which 
scientists are encouraged to present new 
technologies enhancing clinical development, 
in particular the Innovation Task Force63 and 
the Quali� cation Advice process.64

With respect speci� cally to placebo response 
prediction using AI/ML, agencies are fully 

aware of the negative impact of the placebo 
response on clinical development e�  ciency. 
In the context of Digital Health Technologies 
(DHT), the focus of the EMA quali� cation 
process (which might also be applicable to 
the FDA expectations) is to assess whether 
the measure taken with the technology is � t 
for its intended clinical use in the regulatory 
context of medicinal products development/
evaluation. Applicants are expected to 
elaborate on the clinically meaningful 
relevance of the concept of interest and on 
the potential bene� t of using new technology 
measures over other existing methods.  

To avoid any bias in the data interpretation 
and to preserve accuracy, usability, equity, 
and trust, regulatory agencies will expect full 
transparency and disclosure of the modeling 
(e.g., feature selection methodologies, 
proven predictivity, and reproducibility of the 
models in independent clinical trials). When 
applicable, prespeci� cation of the model 
must be documented before conducting the 
analysis. For example, methods applied to 
validate and test the algorithms and their 
accuracy, reliability, and sensitivity to change 
will be required. Any exclusion of patients 
from the population eligible for RCTs might be 
re� ected in the labeling, unless extrapolation 
is accepted. Furthermore, patient exclusion 
based on increased likelihood of placebo 
response might be ethically or scienti� cally 
unacceptable, for the reasons mentioned 
above, and so such patient exclusion strategies 
would have to be justi� ed and, ideally, decided 
upon after early interaction with regulators. 

CONCLUSION
The placebo response has challenged drug 

development for decades, making it di�  cult 
to distinguish true treatment e�  cacy from 
placebo response. Techniques such as training 
sites to avoid in� ating patient expectation 
in patient interactions and identifying 
placebo responders through placebo run-in 
periods have, in some cases, provided modest 
improvement in placebo response rates; 
yet, the placebo response is continuing to 
increase in many CNS indications. Even if 
these techniques have marginally succeeded 
to limit the negative impact of the placebo 
response, they have not signi� cantly improved 
characterization of drug e� ect size.  

The emergence of advanced data analytic 

techniques (AI) creates a signi� cant 
opportunity to in� uence drug development 
and clinical research. These techniques are 
not only bene� cial, but they might also 
be necessary to address a phenomenon 
as complex as placebo response. While 
the drug development community is just 
beginning to capitalize on the power of AI 
to better understand and limit the negative 
consequences of the placebo response, this 
� eld is truly in its infancy. Even so, the analysis 
and examples presented here demonstrate 
the real potential of an AI-based approach, 
ranging from generating meaningful 
associations in depression and bipolar disorder 
to developing predictive algorithms in 
schizophrenia, pain, and Parkinson’s disease. 
This area will continue to evolve over time, 
with further e� orts needed for this approach 
to reach its full potential.

All stakeholders in drug development, 
including pharmaceutical and biotechnology 
companies, contract research organizations 
(CROs), technology developers, patients, 
regulators, and payers, can and should play 
active roles in furthering the use of AI to better 
understand and ultimately predict placebo 
response. Collaboration and cooperation 
between sponsor companies to share and 
pool clinical trial data would be signi� cantly 
enabling, acknowledging that standards for 
data organization and quality are critical for 
this to be e� ective. Technology developers 
can work to accelerate acceptance of these 
approaches by providing more use cases and 
demonstration of positive impact. Regulators 
can facilitate the adoption of such approaches 
by providing clear paths for their evaluation 
and ensuring their appropriate, valid, and 
ethical use.  

In the post-COVID-19 era of drug 
development, we predict that a new era 
of innovation will be born, with AI-based 
approaches increasing in utility and 
acceptance. Industry trends focusing on 
innovation are already emerging. The advent 
of digital endpoints is providing increased 
data resolution, but also requiring new tools 
to manage massive datasets. Decentralized, 
virtual, and hybrid trials are increasing across 
the industry, but also raising questions of how 
this new trial context will impact placebo 
response rates. The use of AI to address these 
and other issues has the potential to positively 
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impact trial success rates, cost, timelines, and 
the translatability of clinical trial data to larger 
patient populations, with bene� ts apparent 
to all.
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